Semantic Evaluation of Machine Translation

نویسنده

  • Billy Tak-Ming Wong
چکیده

It is recognized that many evaluation metrics of machine translation in use that focus on surface word level suffer from their lack of tolerance of linguistic variance, and the incorporation of linguistic features can improve their performance. To this end, WordNet is therefore widely utilized by recent evaluation metrics as a thesaurus for identifying synonym pairs. On this basis, word pairs in similar meaning, however, are still neglected. We investigate the significance of this particular word group to the performance of evaluation metrics. In our experiments we integrate eight different measures of lexical semantic similarity into an evaluation metric based on standard measures of unigram precision, recall and F-measure. It is found that a knowledge-based measure proposed by Wu and Palmer and a corpus-based measure, namely Latent Semantic Analysis, lead to an observable gain in correlation with human judgments of translation quality, in an extent to which better than the use of WordNet for synonyms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of English-Persian Translation of Neural Google Translation

Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...

متن کامل

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Evaluating Machine Translation Utility via Semantic Role Labels

We present the methodology that underlies new metrics for semantic machine translation evaluation that we are developing. Unlike widely-used lexical and n-gram based MT evaluation metrics, the aim of semantic MT evaluation is to measure the utility of translations. We discuss the design of empirical studies to evaluate the utility of machine translation output by assessing the accuracy for key ...

متن کامل

Semantic Textual Similarity for Machine Translation Evaluation

Machine translation translates a speech of text from the source language to target language. This paper introduces machine translation evaluation by calculating the semantic textual similarity between the machine translated sentences. The similarity score varies by using different values of alpha, beta and ranges semantic similarity [0,5]. The experiment is carried out on SemEval 2017 datasets....

متن کامل

Learning the Impact of Machine Translation Evaluation Metrics for Semantic Textual Similarity

We present a work to evaluate the hypothesis that automatic evaluation metrics developed for Machine Translation (MT) systems have significant impact on predicting semantic similarity scores in Semantic Textual Similarity (STS) task for English, in light of their usage for paraphrase identification. We show that different metrics may have different behaviors and significance along the semantic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010